Dynamics of Neural Networks with Different Motif Distributions

Gordon Govan gmg8@hw.ac.uk 2nd year PhD

The Brain

http://upload.wikimedia.org/wikipedia/commons/b/b3/Vertebrate-brain-regions.png

http://upload.wikimedia.org/wikipedia/commons/5/52/Neuron_-_annotated.svg

Brain Networks

Exist at different scales:

Individual neurons

Brain regions

Human

http://upload.wikimedia.org/wikipedia/commons/1/15/PurkinjeCell.jpg

Structured Node Model (SN model)

An algorithm for constructing a network

The Two Networks

Very different networks

Motifs

"patterns of interconnections that are found in significantly higher numbers in complex networks than random networks" Milo, R. et al. Network Motifs: Simple Building Blocks of

Complex Networks, Science, 2002, 298, 824-827

Motif Distributions

Random Recurrent Neural Networks (RRNNs) Simple model of a neural network

Adding an Influence

Three different methods of adding an influence were used

Observing the Dynamics

Trajectories of Dynamics

Regular Dynamics

Regular

Not Regular

Timestep

Results

Percentage of networks that become regular

Summary

Used SN model to create many networks

Chose two with different motif distributions

Simulated them as RRNNs using three different methods of applying a stimulus

Compared how often each network became regular

Conclusions

SN model able to create networks with a variety of different motif distributions

Networks with different motif distributions have different dynamics

Networks with more feedback loops will be more likely to have chaotic dynamics

Networks of a more feed forward nature will be easier to control

Further Work

We only looked at the motif distribution, there are other measures that are different between the two networks

Current work is finding links between the average degree and the dynamics

Look at whether networks that are easier to control are as adapt at training to recognise patterns